|
The biological and geological future of the Earth can be extrapolated based upon the estimated effects of several long-term influences. These include the chemistry at the Earth's surface, the rate of cooling of the planet's interior, the gravitational interactions with other objects in the Solar System, and a steady increase in the Sun's luminosity. An uncertain factor in this extrapolation is the ongoing influence of technology introduced by humans, such as climate engineering,〔 which could cause significant changes to the planet.〔〔 The current Holocene extinction〔 is being caused by technology and the effects may last for up to five million years. In turn, technology may result in the extinction of humanity, leaving the planet to gradually return to a slower evolutionary pace resulting solely from long-term natural processes.〔〔 Over time intervals of hundreds of millions of years, random celestial events pose a global risk to the biosphere, which can result in mass extinctions. These include impacts by comets or asteroids with diameters of or more, and the possibility of a massive stellar explosion, called a supernova, within a 100-light-year radius of the Sun, called a Near-Earth supernova. Other large-scale geological events are more predictable. If the long-term effects of global warming are disregarded, Milankovitch theory predicts that the planet will continue to undergo glacial periods at least until the Quaternary glaciation comes to an end. These periods are caused by eccentricity, axial tilt, and precession of the Earth's orbit.〔 As part of the ongoing supercontinent cycle, plate tectonics will probably result in a supercontinent in 250–350 million years. Some time in the next 1.5–4.5 billion years, the axial tilt of the Earth may begin to undergo chaotic variations, with changes in the axial tilt of up to 90°. During the next four billion years, the luminosity of the Sun will steadily increase, resulting in a rise in the solar radiation reaching the Earth. This will cause a higher rate of weathering of silicate minerals, which will cause a decrease in the level of carbon dioxide in the atmosphere. In about 600 million years, the level of will fall below the level needed to sustain C3 carbon fixation photosynthesis used by trees. Some plants use the C4 carbon fixation method, allowing them to persist at concentrations as low as 10 parts per million. However, the long-term trend is for plant life to die off altogether. The extinction of plants will be the demise of almost all animal life, since plants are the base of the food chain on Earth.〔 In about 1.1 billion years, the solar luminosity will be 10% higher than at present. This will cause the atmosphere to become a "moist greenhouse", resulting in a runaway evaporation of the oceans. As a likely consequence, plate tectonics will come to an end, and with them the entire carbon cycle.〔 Following this event, the planet's magnetic dynamo may come to an end, causing the magnetosphere to decay and leading to an accelerated loss of volatiles from the outer atmosphere. Four billion years from now, the increase in the Earth's surface temperature will cause a runaway greenhouse effect. By that point, most if not all the life on the surface will be extinct. The most probable fate of the planet is absorption by the Sun in about 7.5 billion years, after the star has entered the red giant phase and expanded to cross the planet's current orbit. == Human influence == Humans now play a key role in the biosphere, with the large human population dominating many of Earth's ecosystems.〔 This has resulted in a widespread, ongoing mass extinction of other species during the present geological epoch, now known as the Holocene extinction. The large-scale loss of species caused by human influence since the 1950s has been called a biotic crisis, with an estimated 10% of the total species lost as of 2007. At current rates, about 30% of species are at risk of extinction in the next hundred years.〔 The Holocene extinction event is the result of habitat destruction, the widespread distribution of invasive species, hunting, and climate change.〔 In the present day, human activity has had a significant impact on the surface of the planet. More than a third of the land surface has been modified by human actions, and humans use about 20% of global primary production.〔 The concentration of carbon dioxide in the atmosphere has increased by close to 30% since the start of the Industrial Revolution.〔 The consequences of a persistent biotic crisis have been predicted to last for at least five million years. It could result in a decline in biodiversity and homogenization of biotas, accompanied by a proliferation of species that are opportunistic, such as pests and weeds. Novel species may also emerge; in particular taxa that prosper in human-dominated ecosystems may rapidly diversify into many new species. Microbes are likely to benefit from the increase in nutrient-enriched environmental niches. No new species of existing large vertebrates are likely to arise and food chains will probably be shortened.〔〔 There are multiple scenarios for known risks that can have a global impact on the planet. From the perspective of humanity, these can be subdivided into survivable risks and terminal risks. Risks that humanity pose to itself include climate change, the misuse of nanotechnology, a nuclear holocaust, warfare with a programmed superintelligence, a genetically engineered disease, or a disaster caused by a physics experiment. Similarly, several natural events may pose a doomsday threat, including a highly virulent disease, the impact of an asteroid or comet, runaway greenhouse effect, and resource depletion. There may also be the possibility of an infestation by an extraterrestrial lifeform.〔 The actual odds of these scenarios are difficult if not impossible to deduce.〔〔 Should the human race become extinct, then the various features assembled by humanity will begin to decay. The largest structures have an estimated decay half-life of about 1,000 years. The last surviving structures would most likely be open pit mines, large landfills, major highways, wide canal cuts, and earth-fill flank dams. A few massive stone monuments like the pyramids at the Giza Necropolis or the sculptures at Mount Rushmore may still survive in some form after a million years.〔 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Future of the Earth」の詳細全文を読む スポンサード リンク
|